LeetCode Solutions
798. Smallest Rotation with Highest Score
Time: $O(n)$ Space: $O(1)$
class Solution {
public:
int bestRotation(vector<int>& A) {
const int n = A.size();
// rotate[i] := how many points losing after rotating left i times
vector<int> rotate(n);
// Rotating i - A[i] times makes A[i] == its new index
// So rotating i - A[i] + 1 times will "start" to make A[i] > its index,
// Which is the starting index to lose point
for (int i = 0; i < n; ++i)
--rotate[(i - A[i] + 1 + n) % n];
// Each time we rotate, we make index 0 to index n - 1,
// So we get 1 point
for (int i = 1; i < n; ++i)
rotate[i] += rotate[i - 1] + 1;
return distance(begin(rotate), max_element(begin(rotate), end(rotate)));
}
};
class Solution {
public int bestRotation(int[] A) {
final int n = A.length;
// rotate[i] := how many points losing after rotating left i times
int[] rotate = new int[n];
// Rotating i - A[i] times makes A[i] == its new index
// So rotating i - A[i] + 1 times will "start" to make A[i] > its index,
// Which is the starting index to lose point
for (int i = 0; i < n; ++i)
--rotate[(i - A[i] + 1 + n) % n];
// Each time we rotate, we make index 0 to index n - 1,
// So we get 1 point
for (int i = 1; i < n; ++i)
rotate[i] += rotate[i - 1] + 1;
int max = Integer.MIN_VALUE;
int maxIndex = 0;
for (int i = 0; i < n; ++i)
if (rotate[i] > max) {
max = rotate[i];
maxIndex = i;
}
return maxIndex;
}
}