LeetCode Solutions

368. Largest Divisible Subset

Time: $O(n^2)$

Space: $O(n)$

			

class Solution {
 public:
  vector<int> largestDivisibleSubset(vector<int>& nums) {
    const int n = nums.size();
    vector<int> ans;
    // sizeEndsAt[i] := largest size ends at nums[i]
    vector<int> sizeEndsAt(n, 1);
    // prevIndex[i] := the best index s.t.
    // 1. nums[i] % nums[prevIndex[i]] == 0 and
    // 2. can increase the size of the subset
    vector<int> prevIndex(n, -1);
    int maxSize = 0;  // Max size of the subset
    int index = -1;   // Track the best ending index

    sort(begin(nums), end(nums));

    // Fix max ending num in the subset first
    for (int i = 0; i < n; ++i) {
      for (int j = i - 1; j >= 0; --j)
        if (nums[i] % nums[j] == 0 && sizeEndsAt[i] < sizeEndsAt[j] + 1) {
          sizeEndsAt[i] = sizeEndsAt[j] + 1;
          prevIndex[i] = j;
        }
      // Find a new subset that has a bigger size
      if (maxSize < sizeEndsAt[i]) {
        maxSize = sizeEndsAt[i];
        index = i;  // Update the best ending index
      }
    }

    // Loop from back to front
    while (index != -1) {
      ans.push_back(nums[index]);
      index = prevIndex[index];
    }

    return ans;
  }
};
			

class Solution {
  public List<Integer> largestDivisibleSubset(int[] nums) {
    final int n = nums.length;
    List<Integer> ans = new ArrayList<>();
    // sizeEndsAt[i] := largest size ends at nums[i]
    int[] sizeEndsAt = new int[n];
    // prevIndex[i] := the best index s.t.
    // 1. nums[i] % nums[prevIndex[i]] == 0 and
    // 2. can increase the size of the subset
    int[] prevIndex = new int[n];
    int maxSize = 0; // Max size of the subset
    int index = -1;  // Track the best ending index

    Arrays.fill(sizeEndsAt, 1);
    Arrays.fill(prevIndex, -1);
    Arrays.sort(nums);

    // Fix max ending num in the subset first
    for (int i = 0; i < n; ++i) {
      for (int j = i - 1; j >= 0; --j)
        if (nums[i] % nums[j] == 0 && sizeEndsAt[i] < sizeEndsAt[j] + 1) {
          sizeEndsAt[i] = sizeEndsAt[j] + 1;
          prevIndex[i] = j;
        }
      // Find a new subset that has a bigger size
      if (maxSize < sizeEndsAt[i]) {
        maxSize = sizeEndsAt[i];
        index = i; // Update the best ending index
      }
    }

    // Loop from back to front
    while (index != -1) {
      ans.add(nums[index]);
      index = prevIndex[index];
    }

    return ans;
  }
}
			

class Solution:
  def largestDivisibleSubset(self, nums: List[int]) -> List[int]:
    n = len(nums)
    ans = []
    count = [1] * n
    prevIndex = [-1] * n
    maxCount = 0
    index = -1

    nums.sort()

    for i, num in enumerate(nums):
      for j in reversed(range(i)):
        if num % nums[j] == 0 and count[i] < count[j] + 1:
          count[i] = count[j] + 1
          prevIndex[i] = j
      if count[i] > maxCount:
        maxCount = count[i]
        index = i

    while index != -1:
      ans.append(nums[index])
      index = prevIndex[index]

    return ans