LeetCode Solutions

323. Number of Connected Components in an Undirected Graph

Time: $O(|V| + |E|)$

Space: $O(|V| + |E|)$

			

class Solution {
 public:
  int countComponents(int n, vector<vector<int>>& edges) {
    int ans = 0;
    vector<vector<int>> graph(n);
    unordered_set<int> seen;

    for (const vector<int>& e : edges) {
      const int u = e[0];
      const int v = e[1];
      graph[u].push_back(v);
      graph[v].push_back(u);
    }

    for (int i = 0; i < n; ++i)
      if (!seen.count(i)) {
        bfs(graph, i, seen);
        ++ans;
      }

    return ans;
  }

 private:
  void bfs(const vector<vector<int>>& graph, int node,
           unordered_set<int>& seen) {
    queue<int> q{{node}};
    seen.insert(node);

    while (!q.empty()) {
      const int u = q.front();
      q.pop();
      for (const int v : graph[u])
        if (!seen.count(v)) {
          q.push(v);
          seen.insert(v);
        }
    }
  }
};
			

class Solution {
  public int countComponents(int n, int[][] edges) {
    int ans = 0;
    List<Integer>[] graph = new List[n];
    Set<Integer> seen = new HashSet<>();

    for (int i = 0; i < n; ++i)
      graph[i] = new ArrayList<>();

    for (int[] e : edges) {
      final int u = e[0];
      final int v = e[1];
      graph[u].add(v);
      graph[v].add(u);
    }

    for (int i = 0; i < n; ++i)
      if (!seen.contains(i)) {
        bfs(graph, i, seen);
        ++ans;
      }

    return ans;
  }

  private void bfs(List<Integer>[] graph, int node, Set<Integer> seen) {
    Queue<Integer> q = new ArrayDeque<>(Arrays.asList(node));
    seen.add(node);

    while (!q.isEmpty()) {
      final int u = q.poll();
      for (final int v : graph[u])
        if (!seen.contains(v)) {
          q.offer(v);
          seen.add(v);
        }
    }
  }
}
			

class Solution:
  def countComponents(self, n: int, edges: List[List[int]]) -> int:
    ans = 0
    graph = [[] for _ in range(n)]
    seen = set()

    for u, v in edges:
      graph[u].append(v)
      graph[v].append(u)

    def bfs(node: int, seen: Set[int]) -> None:
      q = deque([node])
      seen.add(node)

      while q:
        u = q.pop()
        for v in graph[u]:
          if v not in seen:
            q.append(v)
            seen.add(v)

    for i in range(n):
      if i not in seen:
        bfs(i, seen)
        ans += 1

    return ans