LeetCode Solutions
1029. Two City Scheduling
Time: $O(n\log n)$ Space: $O(1)$
class Solution {
public:
int twoCitySchedCost(vector<vector<int>>& costs) {
const int n = costs.size() / 2;
int ans = 0;
// How much money can we save if we fly a person to A instead of B?
// To save money, we should
// 1) fly the person with the max saving to A
// 2) fly the person with the min saving to B
sort(begin(costs), end(costs), [](const auto& a, const auto& b) {
// Sort in descending order by the money saved
// If we fly a person to A instead of B
return a[1] - a[0] > b[1] - b[0];
});
for (int i = 0; i < n; ++i)
ans += costs[i][0] + costs[i + n][1];
return ans;
}
};
class Solution {
public int twoCitySchedCost(int[][] costs) {
final int n = costs.length / 2;
int ans = 0;
// How much money can we save if we fly a person to A instead of B?
// To save money, we should
// 1) fly the person with the max saving to A
// 2) fly the person with the min saving to B
// Sort in descending order by the money saved if we fly a person to A instead of B
Arrays.sort(costs, (a, b) -> (b[1] - b[0]) - (a[1] - a[0]));
for (int i = 0; i < n; ++i)
ans += costs[i][0] + costs[i + n][1];
return ans;
}
}
class Solution:
def twoCitySchedCost(self, costs: List[List[int]]) -> int:
n = len(costs) // 2
# How much money can we save if we fly a person to A instead of B?
# To save money, we should
# 1) fly the person with the max saving to A
# 2) fly the person with the min saving to B
# Sort in descending order by the money saved if we fly a person to A
costs.sort(key=lambda x: x[0] - x[1])
return sum(costs[i][0] + costs[i + n][1] for i in range(n))