LeetCode Solutions

152. Maximum Product Subarray

Time: $O(n)$

Space: $O(1)$

			

class Solution {
 public:
  int maxProduct(vector<int>& nums) {
    int ans = nums[0];
    int dpMin = nums[0];  // Min so far
    int dpMax = nums[0];  // Max so far

    for (int i = 1; i < nums.size(); ++i) {
      const int num = nums[i];
      const int prevMin = dpMin;  // dpMin[i - 1]
      const int prevMax = dpMax;  // dpMax[i - 1]
      if (num < 0) {
        dpMin = min(prevMax * num, num);
        dpMax = max(prevMin * num, num);
      } else {
        dpMin = min(prevMin * num, num);
        dpMax = max(prevMax * num, num);
      }
      ans = max(ans, dpMax);
    }

    return ans;
  }
};
			

class Solution {
  public int maxProduct(int[] nums) {
    int ans = nums[0];
    int dpMin = nums[0]; // Min so far
    int dpMax = nums[0]; // Max so far

    for (int i = 1; i < nums.length; ++i) {
      final int num = nums[i];
      final int prevMin = dpMin; // dpMin[i - 1]
      final int prevMax = dpMax; // dpMax[i - 1]
      if (num < 0) {
        dpMin = Math.min(prevMax * num, num);
        dpMax = Math.max(prevMin * num, num);
      } else {
        dpMin = Math.min(prevMin * num, num);
        dpMax = Math.max(prevMax * num, num);
      }
      ans = Math.max(ans, dpMax);
    }

    return ans;
  }
}
			

class Solution:
  def maxProduct(self, nums: List[int]) -> int:
    ans = nums[0]
    prevMin = nums[0]
    prevMax = nums[0]

    for i in range(1, len(nums)):
      mini = prevMin * nums[i]
      maxi = prevMax * nums[i]
      prevMin = min(nums[i], mini, maxi)
      prevMax = max(nums[i], mini, maxi)
      ans = max(ans, prevMax)

    return ans