LeetCode Solutions
63. Unique Paths II
Time: $O(mn)$ Space: $O(mn)$
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
const int m = obstacleGrid.size();
const int n = obstacleGrid[0].size();
// dp[i][j] := unique paths from (0, 0) to (i - 1, j - 1)
vector<vector<long>> dp(m + 1, vector<long>(n + 1, 0));
dp[0][1] = 1; // Can also set dp[1][0] = 1
for (int i = 1; i <= m; ++i)
for (int j = 1; j <= n; ++j)
if (!obstacleGrid[i - 1][j - 1])
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
return dp[m][n];
}
};
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
final int m = obstacleGrid.length;
final int n = obstacleGrid[0].length;
// dp[i][j] := unique paths from (0, 0) to (i - 1, j - 1)
long[][] dp = new long[m + 1][n + 1];
dp[0][1] = 1; // Can also set dp[1][0] = 1
for (int i = 1; i <= m; ++i)
for (int j = 1; j <= n; ++j)
if (obstacleGrid[i - 1][j - 1] == 0)
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
return (int) dp[m][n];
}
}
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
m = len(obstacleGrid)
n = len(obstacleGrid[0])
# dp[i][j] := unique paths from (0, 0) to (i - 1, j - 1)
dp = [[0] * (n + 1) for _ in range(m + 1)]
dp[0][1] = 1 # Can also set dp[1][0] = 1
for i in range(1, m + 1):
for j in range(1, n + 1):
if obstacleGrid[i - 1][j - 1] == 0:
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
return dp[m][n]