LeetCode Solutions

51. N-Queens

Time: $O(n \cdot n!)$

Space: $|\texttt{ans}|$

			

class Solution {
 public:
  vector<vector<string>> solveNQueens(int n) {
    vector<vector<string>> ans;
    dfs(n, 0, vector<bool>(n), vector<bool>(2 * n - 1), vector<bool>(2 * n - 1),
        vector<string>(n, string(n, '.')), ans);
    return ans;
  }

 private:
  void dfs(int n, int i, vector<bool>&& cols, vector<bool>&& diag1,
           vector<bool>&& diag2, vector<string>&& board,
           vector<vector<string>>& ans) {
    if (i == n) {
      ans.push_back(board);
      return;
    }

    for (int j = 0; j < n; ++j) {
      if (cols[j] || diag1[i + j] || diag2[j - i + n - 1])
        continue;
      board[i][j] = 'Q';
      cols[j] = diag1[i + j] = diag2[j - i + n - 1] = true;
      dfs(n, i + 1, move(cols), move(diag1), move(diag2), move(board), ans);
      cols[j] = diag1[i + j] = diag2[j - i + n - 1] = false;
      board[i][j] = '.';
    }
  }
};
			

class Solution {
  public List<List<String>> solveNQueens(int n) {
    List<List<String>> ans = new ArrayList<>();
    char[][] board = new char[n][n];

    for (int i = 0; i < n; ++i)
      Arrays.fill(board[i], '.');

    dfs(n, 0, new boolean[n], new boolean[2 * n - 1], new boolean[2 * n - 1], board, ans);
    return ans;
  }

  private void dfs(int n, int i, boolean[] cols, boolean[] diag1, boolean[] diag2, char[][] board,
                   List<List<String>> ans) {
    if (i == n) {
      ans.add(construct(board));
      return;
    }

    for (int j = 0; j < cols.length; ++j) {
      if (cols[j] || diag1[i + j] || diag2[j - i + n - 1])
        continue;
      board[i][j] = 'Q';
      cols[j] = diag1[i + j] = diag2[j - i + n - 1] = true;
      dfs(n, i + 1, cols, diag1, diag2, board, ans);
      cols[j] = diag1[i + j] = diag2[j - i + n - 1] = false;
      board[i][j] = '.';
    }
  }

  private List<String> construct(char[][] board) {
    List<String> listBoard = new ArrayList<>();
    for (int i = 0; i < board.length; ++i)
      listBoard.add(String.valueOf(board[i]));
    return listBoard;
  }
}
			

class Solution:
  def solveNQueens(self, n: int) -> List[List[str]]:
    ans = []
    cols = [False] * n
    diag1 = [False] * (2 * n - 1)
    diag2 = [False] * (2 * n - 1)

    def dfs(i: int, board: List[int]) -> None:
      if i == n:
        ans.append(board)
        return

      for j in range(n):
        if cols[j] or diag1[i + j] or diag2[j - i + n - 1]:
          continue
        cols[j] = diag1[i + j] = diag2[j - i + n - 1] = True
        dfs(i + 1, board + ['.' * j + 'Q' + '.' * (n - j - 1)])
        cols[j] = diag1[i + j] = diag2[j - i + n - 1] = False

    dfs(0, [])
    return ans