LeetCode Solutions
1027. Longest Arithmetic Subsequence
Time: $O(n^2)$ Space: $O(n^2)$
class Solution {
public:
int longestArithSeqLength(vector<int>& nums) {
const int n = nums.size();
int ans = 0;
// dp[i][k] := length of the longest arithmetic subseq ofnums
// nums[0..i] with k = diff + 500
vector<vector<int>> dp(n, vector<int>(1001));
for (int i = 0; i < n; ++i)
for (int j = 0; j < i; ++j) {
const int k = nums[i] - nums[j] + 500;
dp[i][k] = max(2, dp[j][k] + 1);
ans = max(ans, dp[i][k]);
}
return ans;
}
};
class Solution {
public int longestArithSeqLength(int[] nums) {
final int n = nums.length;
int ans = 0;
// dp[i][k] := length of the longest arithmetic subseq ofnums
// nums[0..i] with k = diff + 500
int[][] dp = new int[n][1001];
for (int i = 0; i < n; ++i)
for (int j = 0; j < i; ++j) {
final int k = nums[i] - nums[j] + 500;
dp[i][k] = Math.max(2, dp[j][k] + 1);
ans = Math.max(ans, dp[i][k]);
}
return ans;
}
}
class Solution:
def longestArithSeqLength(self, nums: List[int]) -> int:
n = len(nums)
ans = 0
# dp[i][k] := length of the longest arithmetic subseq ofnums
# nums[0..i] with k = diff + 500
dp = [[0] * 1001 for _ in range(n)]
for i in range(n):
for j in range(i):
k = nums[i] - nums[j] + 500
dp[i][k] = max(2, dp[j][k] + 1)
ans = max(ans, dp[i][k])
return ans