LeetCode Solutions
494. Target Sum
Time: $O(nk)$, where $k = (\Sigma \texttt{nums[i]} + S) / 2$ Space: $O(nk)$
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
const int sum = accumulate(begin(nums), end(nums), 0);
if (sum < abs(target) || (sum + target) & 1)
return 0;
return knapsack(nums, (sum + target) / 2);
}
private:
int knapsack(const vector<int>& nums, int target) {
const int n = nums.size();
// dp[i][j] := # of ways to sum to j by nums[0..i)
vector<vector<int>> dp(n + 1, vector<int>(target + 1));
dp[0][0] = 1;
for (int i = 1; i <= n; ++i) {
const int num = nums[i - 1];
for (int j = 0; j <= target; ++j)
if (j < num)
dp[i][j] = dp[i - 1][j];
else
dp[i][j] = dp[i - 1][j] + dp[i - 1][j - num];
}
return dp[n][target];
}
};
class Solution {
public int findTargetSumWays(int[] nums, int target) {
final int sum = Arrays.stream(nums).sum();
if (sum < Math.abs(target) || (sum + target) % 2 == 1)
return 0;
return knapsack(nums, (sum + target) / 2);
}
private int knapsack(int[] nums, int target) {
final int n = nums.length;
// dp[i][j] := # of ways to sum to j by nums[0..i)
int[][] dp = new int[n + 1][target + 1];
dp[0][0] = 1;
for (int i = 1; i <= n; ++i) {
final int num = nums[i - 1];
for (int j = 0; j <= target; ++j)
if (j < num)
dp[i][j] = dp[i - 1][j];
else
dp[i][j] = dp[i - 1][j] + dp[i - 1][j - num];
}
return dp[n][target];
}
}
class Solution:
def findTargetSumWays(self, nums: List[int], target: int) -> int:
summ = sum(nums)
if summ < abs(target) or (summ + target) & 1:
return 0
def knapsack(target: int) -> int:
# dp[i] := # Of ways to sum to i by nums so far
dp = [1] + [0] * summ
for num in nums:
for j in range(summ, num - 1, -1):
dp[j] += dp[j - num]
return dp[target]
return knapsack((summ + target) // 2)