LeetCode Solutions
486. Predict the Winner
Time: $O(n^2)$ Space: $O(n^2)$
class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
const int n = nums.size();
// dp[i][j] := max number you can get more than your opponent in nums[i..j]
vector<vector<int>> dp(n, vector<int>(n));
for (int i = 0; i < n; ++i)
dp[i][i] = nums[i];
for (int d = 1; d < n; ++d)
for (int i = 0; i + d < n; ++i) {
const int j = i + d;
dp[i][j] = max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]);
}
return dp[0][n - 1] >= 0;
}
};
class Solution {
public boolean PredictTheWinner(int[] nums) {
final int n = nums.length;
// dp[i][j] := max number you can get more than your opponent in nums[i..j]
int[][] dp = new int[n][n];
for (int i = 0; i < n; ++i)
dp[i][i] = nums[i];
for (int d = 1; d < n; ++d)
for (int i = 0; i + d < n; ++i) {
final int j = i + d;
dp[i][j] = Math.max(nums[i] - dp[i + 1][j], nums[j] - dp[i][j - 1]);
}
return dp[0][n - 1] >= 0;
}
}
class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
const int n = nums.size();
vector<int> dp = nums;
for (int d = 1; d < n; ++d)
for (int j = n - 1; j - d >= 0; --j) {
const int i = j - d;
dp[j] = max(nums[i] - dp[j], // Pick left num
nums[j] - dp[j - 1]); // Pick right num
}
return dp[n - 1] >= 0;
}
};