LeetCode Solutions
797. All Paths From Source to Target
Time: $O(n \cdot 2^n)$ Space: $O(n \cdot 2^n)$
class Solution {
public:
vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
vector<vector<int>> ans;
dfs(graph, 0, {0}, ans);
return ans;
}
private:
void dfs(const vector<vector<int>>& graph, int u, vector<int>&& path,
vector<vector<int>>& ans) {
if (u == graph.size() - 1) {
ans.push_back(path);
return;
}
for (const int v : graph[u]) {
path.push_back(v);
dfs(graph, v, move(path), ans);
path.pop_back();
}
}
};
class Solution {
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
List<List<Integer>> ans = new ArrayList<>();
dfs(graph, 0, new ArrayList<>(Arrays.asList(0)), ans);
return ans;
}
private void dfs(int[][] graph, int u, List<Integer> path, List<List<Integer>> ans) {
if (u == graph.length - 1) {
ans.add(new ArrayList<>(path));
return;
}
for (final int v : graph[u]) {
path.add(v);
dfs(graph, v, path, ans);
path.remove(path.size() - 1);
}
}
}
class Solution:
def allPathsSourceTarget(self, graph: List[List[int]]) -> List[List[int]]:
ans = []
def dfs(u: int, path: List[int]) -> None:
if u == len(graph) - 1:
ans.append(path)
return
for v in graph[u]:
dfs(v, path + [v])
dfs(0, [0])
return ans